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Introduction 
Ruth returned from her vacation to find that her mother had been diagnosed with cancer in both 
breasts.  Unfortunately, the cancer had also spread to her mother’s lungs and liver, and 
aggressive chemotherapy had been begun.  The genetic analysis from the breast biopsy revealed 
that her mother had a mutation for the BRCA1 gene.  At first, her mother responded well to 
treatment, but she died after three months.  Her mother was only 48 years old.  At the funeral, 
Ruth learned from her uncle that her mother’s older sister also had died from breast cancer very 
young.  Ruth remembered that her mother never wanted to talk about her sister. 
 During those three months, Ruth spent much time caring for her mother, but after her 
mother’s death, her husband and father encouraged her to seek out genetic testing.  Ruth set up 
an appointment for the testing and also did some of her own research on this gene. 
 Ruth found that 8% of women in the general population will develop breast cancer by age 
70 (ACS 2015), and about 5-10% of breast cancers come from inherited, mutated genes 
(Schwartz et al 2007).  However, if she carries her mother’s mutation, she has a 44-78% chance 
of developing breast cancer by age 70 (Antoniou et al 2003; Chen 2007). Furthermore, she would 
also have an increased risk of ovarian cancer.  
 
The U.S. National Library of Medicine (National Institutes of Health (NIH)) lists 26 different 
genes associated with breast cancer (U.S. National Library of Medicine 2015).  Of all the 
breast cancers attributable to gene mutations, less than 20% are a result of a mutated BRCA1 
gene (Turnbull and Rahman 2008).  Nevertheless, scientists have been very interested in BRCA1 
and the role this gene plays in the development of cancer.  BRCA1 has been localized on the long 
arm (q arm) of the 17th chromosome, position 21 (from base pair 41,196,311- 41,277,499 (81,189 
bp)) (U.S. National Library of Medicine 2015).  This position is usually described as 17q21 
(chromosome 17, long arm, region 2, band 1).  Miki et al (1994) reported results for a cDNA 
(DNA synthesized from the messenger RNA for this gene) sequence for this chromosomal region 
that corresponded to BRCA1.  From this sequence, they could predict the amino acid sequence 
for the protein coded for by the gene. 
 Research has determined that the BRCA1 gene produces mRNA that can be spliced 
in several different ways (producing different proteins), implying that it has a complex set 
of functions.  One function seems to be acting as a tumor suppressor gene, which 
inhibits uncontrolled cellular growth.  Some BRCA1 proteins have important roles in the 
repair of damaged DNA.  Damaged DNA may produce abnormal protein products, 
which may not perform their intended function.  BRCA1 products also interact with a 
bevy of other proteins to regulate other genes, which are involved in such functions as the 
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control of cell cycle, cell division, embryonic development, signal transduction, etc. 
(BRCA1 2015, NCBI 2015, UniProt 2015). 
 To understand how the changes in the nucleotide sequence can lead to cancer, we 
should step back and review some basic cell and molecular biology. 
 The human body is made up of about 10 trillion cells, most of which have become 
specialized for a particular function (e.g., neurons, liver cells, skeletal muscle, etc.).  
Generally, each cell is composed of an internal, aqueous cytosol, surrounded by a 
lipid/protein barrier called the plasma membrane.  Within the cytosol are the nucleus 
and other membrane-bound organelles, each with a set of specific functions.  The 
nucleus is of particular interest, because it comprises the nucleic acid, DNA 
(deoxyribonucleic acid).  DNA, of course, represents the genetic instructions for the 
cell’s physiology, growth, and replication, organized as a sequence of nucleotides.  
DNA’s sequence of nucleotides determines the sequence of complementary strands of 
DNA as well as the sequence of various types of RNA’s (ribonucleic acids).  One type of 
RNA (messenger, mRNA) can transduce the nucleotide sequences from DNA into the 
amino acid sequences of a protein’s. 

Nucleic Acids 
DNA and RNA are polymers, or long chains, of molecules called nucleotides.  Each nucleotide is 
made up of a sugar (either deoxyribose for DNA or ribose for RNA), a phosphate, and a nitrogen 
base (adenine (A), guanine (G), cytosine (C), and thymine (T) in DNA or uracil (U) in RNA).  
A and G are purines, while C, T, and U are pyrimidines (Figure 1).  DNA is composed of two 
strands of nucleotides, bound together by hydrogen bonds, whereas RNA is composed of a single 
nucleotide strand.  Phosphodiester linkages connect each nucleotide to its neighbor (Figure 2).  A 
phosphate is attached to the #5 carbon of the sugar and is designated the 5’ carbon.  The 
phosphate then forms a bond with the hydroxyl group (-OH) attached to the #3 carbon of its 
neighbor, designated the 3’ carbon.  Each nucleotide is linked to its neighbors by 5’ and 3’ ends, 
and that arrangement yields a nucleotide chain with specific 5’-3’ orientation. 
 

 

Figure 1 Nitrogen bases (Mrbean427 2008) 
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Figure 2 Single strand nucleotide chain (Dna_strand3.png: Boumphreyfr 2011 with 
slight revision) 
 
 In the cell, the nucleic acid DNA (deoxyribonucleic acid) contains the encoded 
information for the manufacture of all the proteins a cell needs.  However, DNA does not 
oversee protein synthesis directly, but acts through an intermediary nucleic acid, mRNA 
(messenger ribonucleic acid).  The mRNA sequences produced from the DNA template 
subsequently specify the amino acid order of proteins. 
 In DNA, bases in one strand form hydrogen bonds with the bases in the second 
strand.  Given their particular structures, A in one strand and T in the other strand will 
bond together, whereas C and G bond together.  Each of these pairs of complementary 
bases and is referred to as a base pair (bp).  Barring some error, the reliability of base 
pairing, allows us to deduce the sequence of bases in the one strand, if we know the 
sequence of the other strand.  For example, suppose one sequence is s = ATGAC.  
Because of the required pairing, A - T and C - G, we know the base pairs must appear as 
follows: 
 

s: A T G A C 
 | | | | | 
 T A C T G 
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 RNA is normally a single strand of nucleotides made up of ribose sugars and bases 
A, C, G, and U (instead of the nitrogen base thymine (T)) (Table 1).  Various types of 
cellular RNA play different roles in the cell.  An RNA strand may form loops through 
base pairing with complementary regions within that one molecule.  Also, strands of 
RNA may form hydrogen bonds with other RNA molecules or with single stranded 
portions of DNA molecules. 
 

Base Abbreviation Complement DNA In RNA Base Type 
adenine A T in DNA, U in RNA + + purine 
guanine G C + + purine 
cytosine C G + + pyrimidine 
thymine T A + - pyrimidine 
uracil U A - + pyrimidine 

Table 1 Bases in DNA and RNA 

Quick Review Question 1 Give the complement of the sequence GTACCT. 

Quick Review Question 2 Give the term associated with each of the following: 
a.   Contains the encoded information that is stored to direct the manufacture of all 

the proteins a cell needs 
b.   Compound molecule made of a sugar, a phosphate, and a nitrogen base 
c.   Type of molecule in DNA and RNA sequences 
d.   Bases in DNA 
e.   Bases in RNA 
f.   Purines 
g.   Pyrimidines 
h.   An intermediary nucleic acid in protein synthesis 
i.   Always bonds with base A in DNA 
j.   Always bonds with base A in RNA 
k.   Always bonds with base C in DNA or RNA 
l.   Always bonds with base T in DNA 
m.  Always bonds with base U in RNA 
n.   Always bonds with base G in DNA or RNA 
o.   Single strand of nucleotides 
p.   Double strand of nucleotides 
q.   Pair of complementary bases 

Proteins 
Because of the numerous roles proteins play in cells, they are essential to life.  Proteins 
are components of every cellular membrane, where they have important functions.  For 
instance, they may act as transporters, moving ions or other molecules into or out of the 
cell or organelle.  In the nucleus, some proteins act as transcription factors, activating 
or inhibiting the activity of targeted genes.  Proteins may form the cytoskeleton of cells 
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and participate in internal transportation of structures such as vesicles or chromosomes.  
Enzymes, catalysts for chemical reactions in the cell, are mostly proteins. 
 A simple protein, or polypeptide, is a linear polymer or chain of amino acids.  
Table 2 catalogues the twenty amino acids regularly found in proteins, including both the 
one-letter and the three-letter codes for each.  The central carbon (a carbon) of each 
amino acid bonds with 4 chemical groups—an amino group (-NH3

+), a carboxyl group 
(-COO-), a hydrogen (H), and a variable side-chain (R-group) (Figure 3).  The R-group is 
significant, because it determines the chemical nature (acidic, nonpolar, etc.) of each 
amino acid along the chain.  The constituent amino acids of a protein are linked by 
peptide bonds, which form through the interaction of an amino group of one amino acid 
with the carboxyl group of its neighbor to the left (Figure 4).  As these bonds form, water 
is released, in a condensation reaction.  Because one end (N-terminal) of a protein has a 
free amino group and the other (C-terminal) has a free carboxyl group, we can assign an 
orientation to the chain and list the amino acids from the “beginning” (N-terminal) of the 
chain to the “end” (C-terminal). 
 

One-Letter 
Code 

Three-Letter 
Code 

Name 

A Ala Alanine 
R Arg Arginine 
N Asn Asparagine 
D Asp Aspartic Acid 
C Cys Cysteine 
Q Gln Glutamine 
E Glu Glutamic Acid 
G Gly Glycine 
H His Histidine 
I Ile Isoleucine 
L Leu Leucine 
K Lys Lysine 
M Met Methionine 
F Phe Phenylalanine 
P Pro Proline 
S Ser Serine 
T Thr Threonine 
W Trp Tryptophan 
Y Tyr Tyrosine 
V Val Valine 

Table 2 The twenty commonly occurring amino acids along with their one-letter and 
three-letter codes.  (Note: B is used when one cannot distinguish between D and N 
because of amino acid analytical processing.  Similarly, Z is used when it is ambiguous 
whether the amino acid is E or Q.  X represents an unknown or nonstandard amino acid.) 
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Figure 3 Structure of an amino acid (LLNL 2004)  

 

 

Figure 4 Formation of peptide bond (Yikrazuul 2008) 

Quick Review Question 3 Give the term associated with each of the following: 

a.   Basic building blocks of life 
b.   Proteins that are catalysts for chemical reactions 
c.   A simple protein is a linear chain of these 
d.   Link chains of amino acids 
e.   Formed through the interaction of an amino group of one amino acid with the 

carboxyl group of another 
f.   Amino acid component of a protein 
g.   Free amino group that is the beginning of the chain of amino acids 
h.   Free carboxyl group that is the end of the chain of amino acids 
i.   Linear polymer of amino acids 

Connecting DNA Code to Protein Sequence 
Almost every cell in the human body contains a set of very long DNA molecules, 
complexed with proteins, called chromosomes.  The complete set of chromosomes in a 
cell, containing the organism's hereditary information, is called the genome.  For 
example, a human genome is found in 23 pairs chromosomes (46 total).  Each pair of 
chromosomes is made up of a chromosome from each parent.  Stretches of each of these 
chromosomes that contain information for building a protein or a molecule of RNA are 
termed genes.  Gene segments vary greatly in length, but the average gene is composed 
of about 28,000 base pairs (bp) (B10NUMB3R5 2015). There are contiguous sections of 
each chromosome that are not part of any gene.  Some scientists have concluded that 
genes that code for proteins compose only a small percentage of the human genetic 
material.  The function of these non-coding portions of the DNA is still being 
investigated.  Some are known to be important for regulating gene expression, and others 
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may be necessary to match homologues and for structure in the nucleus.  There is still 
much remaining to discover. 
 In a gene, a sequence of three nucleotides (triplet) specifies an amino acid.  For 
example, the sequence TAT or TAC encodes the information for the amino acid tyrosine 
(Tyr or Y).  The genetic code represents a correspondence between these triplets and the 
amino acids they specify.  With four base choices, a pair of bases could only encode 
information for (4)(4) = 16 amino acids.  With three bases, (4)(4)(4) = 64 possible triplets 
exist.  Several, such as ACG, ACT, ACC and ACA, encode the same amino acid 
(threonine), whereas three sequences do not encode any amino acid.  These three 
sequences (TAA, TAG, and TGA) signal a stop. 
 Synthesis of proteins commences in the nucleus, where enzymes catalyze the 
production of a molecule of RNA, termed messenger RNA or mRNA.  Each DNA triplet 
specifies a complementary sequence of three nucleotides, which we call a codon, in the 
RNA.  RNA synthesis, called transcription, uses one of the strands of DNA as a 
template, where each nucleotide of the DNA strand base pairs to make the mRNA.  The 
result is a strand of RNA that is complementary to the gene sequence, with U replacing T.  
The transcribed mRNA is transported into the cytoplasm, where it binds to a ribosome.  
Ribosomes, complexes of ribosomal RNAs (rRNA) and proteins, translate the mRNA 
sequence into a series of amino acids for the protein.  The molecular apparatus of the 
ribosomes translates groups of three nucleotides (codons) into specific amino acids, 
thereby converting a particular sequence of nucleotides into a specific sequence of amino 
acids. 

Quick Review Question 4 Give the number of each of the following: 
a.   Bases in a triplet 
b.   Different bases in DNA 
c.   Commonly occurring amino acids 
d.   Possible triplets 

Quick Review Question 5 Give the term associated with each of the following: 
a.   Very long DNA molecule 
b.   Contiguous section of a chromosome that encodes information to build a protein 

or an RNA molecule 
c.   A complete set of chromosomes in a cell 
d.   Sequence of three nucleotides in a gene 
e.   The process of using genetic code to direct the building of proteins 
f.   The place in the cell where protein synthesis begins 
g.   The place in the cell where enzymes catalyze the production of a molecule of 

RNA 
h.   A molecule of RNA produced in the nucleus 
i.   The synthesis of RNA 
j.   Area surrounding the cell nucleus 
k.   Small structure on which protein synthesis concludes 
l.   The final process of protein synthesis 
m.  Location in the cell of ribosomes 
n.   Group of three nucleotides 
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Mutations and Cancer 
As long as cells are able to operate normally, with sets of fully functional proteins and 
other interacting molecular components, growth, replication, and physiological processes 
proceed like clockwork.  Cancerous cells, however, are abnormal in structure and 
function.  What turns normal cells away from regular function to become cancerous?  It is 
alterations to genes that can result in the development of cancer.  These alterations are 
called mutations. 
 Some mutations are found in the egg and/or sperm, and therefore can be transmitted 
to offspring.  Most mutations, however, are acquired during the lifetime of the individual, 
often the result of exposure to chemicals, radiation, tobacco smoke, and the like.  It may 
take more than one mutation to make a cell cancerous, and in many cases the abnormal 
cell will die or will be destroyed by the immune system. 
 Mutations in the BRCA1 gene have been studied by many scientists, and around 
1800 have been described (Couch, Nathanson, and Offit 2014).  Some result from 
intronic defects (introns are the regions of the transcribed mRNA, which are removed by 
splicing to leave protein coding regions (exons)).  In some cases, there are small 
insertions or deletions of nucleotides within the gene.  Missense mutations (where the 
wrong nucleotide is substituted for the correct one) are also important types of BRCA1 
mutations (Couch, Nathanson, and Offit 2014).  Many of these variations are associated 
with breast and/or other types of cancer.  Most mutations for this gene result in the 
production of an abnormal protein.  As we discussed earlier, this gene has multiple 
functions, and defects in any one gene product may interfere or knock out a critical 
function.  BRCA1 proteins act to slow down cell division, to promote DNA repair, and to 
regulate transcription.  Consequently, defects in these products can have devastating 
effects on the structure and function of the cell.  Because BRCA1 is classified as a tumor 
suppressor gene, it usually takes two defects, one in the gene on both number 17 
chromosomes, before the effects are noticeable.  So, if you have one normal BRCA1 
gene, it may make sufficient quantities of a normal product so that the mutation in the 
other copy is masked. 
 Other cancer-associated genes are termed oncogenes.  These genes are found 
naturally within the genome or may be inserted by viruses.  When they are functioning 
normally, they are called proto-oncogenes.  Proto-oncogenes play important roles in 
regulating the cell cycle.  When they are over stimulated by changes in their regulatory 
mechanisms, they can promote uncontrolled growth of cells. 

Quick Review Question 6 Give the term associated with each of the following: 
a.   Alteration to gene 
b.   Gene that inhibits tumor growth 
c.   Gene that plays an important role in regulating the cell cycle 
d.   Cancer-associated gene found naturally in genome or inserted by virus and that 

has been over stimulated 

Genomics and Bioinformatics 
We can take what we have learned from genetics and molecular biology and employ it 
for genetic mapping and DNA sequencing.  As techniques for sequencing improved, the 
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Human Genome Project was able to utilize the methodologies to sequence and map the 
entire human genome.  The genome was made up of about three billion nucleotides, so 
the HGP had a daunting job.  Although the initial estimate was 100,000 protein coding 
genes, there turned out to be less than 20,000.  In fact, the protein coding portions of the 
genome makes up less than 2% of the total DNA.   There are far more than 20,000 
proteins in human cells, but with such processes as DNA rearrangement and alternate 
splicing of RNA, this lower number of genes is sufficient to generate all of the needed 
protein products (Ezkurdia et al 2014). 
 For many years, genes could be mapped to specific regions of a chromosome by 
determining recombination frequencies.  During meiosis (cell division in developing 
gametes that results in a halving of the chromosome number in each egg or sperm cell), 
recombination occurs frequently between pairs of chromosomes (called homologues).  
For instance, it may occur between chromosome 17 from the mother and chromosome 17 
from the father.  During meiosis, homologous pairs line up, and it is during this time that 
portions of DNA from one homologue can be exchanged with similar DNA of the other 
homologue.  Recombination or crossing-over is guided by enzymes, and this process is 
an important source of new genetic combinations that lead to increased variation in the 
gametes (Figure 5). 
 

 

Figure 5 Recombination or crossing-over (Boumphreyfr 2009) 
 
 If you have already mapped a particular gene, you can use it as a marker for 
locating other genes close to it on the chromosome.  If two genes are very close together, 
fewer crossing-over events will occur between the two genes than if they were further 
apart. 
 With advances in methodologies, smaller, more quickly detectable markers are used 
for mapping.  One type of marker is the SNP (single nucleotide polymorphism), which is 
the change in only one nucleotide.  These polymorphisms are numerous in the human 
genome and often occur in the noncoding regions of the DNA.  What we have from 



Aligning Sequences 10 

mapping with these markers is a genetic or linkage map.  Such a map shows us the 
linear order of genes on a chromosome, expressed as recombination percentages (map 
units or centimorgans).  One map unit equals one centimorgan (cM), which corresponds 
to 1% recombination between loci or gene positions on the chromosome.  Biologists 
estimate that one map unit covers about 1 million base pairs.  A genetic map allows us to 
link phenotypes (expression of genes; observable traits).  However, this type of map 
reveals only an approximate set of relationships.  The actual or physical distances 
between genes do not correspond directly to the distances determined by recombination 
frequencies. 
 Consequently, it is necessary to determine physical maps, which may be of 
differing resolutions.  Scientist can determine the physical distances between distinct 
landmarks.  There is no need to know the exact DNA sequence or what genes contained 
in the segment between the landmarks.  Early on, commonly used landmarks were 
restriction sites.  A restriction site is a short sequence of nucleotides, recognized by 
enzymes, isolated from various microbes, where the enzyme will make a cut (break 
bonds) in the nucleic acid.  When nucleic acids are treated with such enzymes (singly or 
in combinations), the digest will contain a collection of fragments.  The fragments will 
form a pattern that can be used to generate a low-resolution, physical map.  During the 
first fifteen years of the century, great strides were made in the sequencing of DNA, and 
now we have very high-resolution maps, with nucleotide sequences, for most of the 
human DNA. 
 Genomics is a young branch of science that incorporates the tools and techniques of 
molecular biology not only to sequence genomes, but also to unravel unanswered 
questions regarding the genomic structure, function, and evolution.  The information, so 
gathered, is being stored in enormous databases, allowing the development of a myriad of 
applications to biology, human health, agricultural practices, etc.  Genomics is 
interrelated with the interdisciplinary field of bioinformatics.  Bioinformatics, which 
relies on mathematics, statistics, and computer science, provides tools to compile, 
organize, and analyze the overwhelming volumes of data that are being generated from 
genomic studies. 

Quick Review Question 7 Give the term associated with each of the following: 
a.   Portions of DNA from one homologue can be exchanged with similar DNA of 

the other homologue  
b.   Map that shows the linear order of genes on a chromosome, expressed as 

recombination percentages 
c.   Measure that corresponds to 1% recombination between loci or gene positions 

on the chromosome 
d.   A short sequence of nucleotides, recognized by enzymes, isolated from various 

microbes, where the enzyme will make a cut  
e.   A young branch of science that incorporates the tools and techniques of 

molecular biology not only to sequence genomes, but also to unravel 
unanswered questions regarding the genomic structure, function, and evolution 

f.   Interdisciplinary field that relies on mathematics, statistics, and computer 
science and that provides tools to compile, organize, and analyze the 
overwhelming volumes of data that is being generated from genomic studies 
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Ruth’s Case 
Because of the genomic research into breast cancer genes, scientists can determine the 
specific mutation of the BRCA1 gene that was associated with Ruth’s mother’s cancer.  
As we learn more about the way in which this mutation and others lead to cancer’s 
development, we may be able to develop medical treatments that will prevent suffering 
and death from this disease.  If Ruth’s test for the mutated gene is positive, we still do not 
know for certain that she will develop breast cancer.  However, armed with the 
knowledge we have, she can make informed decisions for her own health and lifestyle.  
Perhaps we’ll have some even better options for her children’s generation. 

Alignment 
Using bioinformatics, we can align DNA sequences to identify regions that are similar.  
Such a similarity might indicate that the two regions have the same function or evolve 
from a common ancestor in a sequence of mutations.  In comparing two sequences, such 
as ATGAC and ACGC, we can employ a metric, called a similarity score, or score, to 
rate various alignments. For a scoring scheme, the highest possible similarity score 
indicates the best alignment(s).  An alignment of two DNA sequences has spaces in the 
sequences so that they are of the same length but so that a space in one sequence is not in 
the same position as a space in the other sequence.  For example, with a dash (-) 
indicating a space, one alignment of s = ATGAC and t = ACGC is 
 

s: A T G A C 
t: A - C G C 

 
Instead of stacking the alignments, we can write them as a pair, (ATGAC, A-CGC).  
Another alignment is (ATGAC--, ---ACGC) or 
 

s: A T G A C - - 
t: - - - A C G C 

  
 Although we can rate the quality of an alignment in many ways, let us define the 
score for an alignment as the total of column scores, where the column scores have the 
following values: 
 

•   +1 for a match 
•   -1 for a mismatch 
•   -2 for a space in one of the corresponding positions 

 
For example, with indicated column scores, the alignment  
 

s: A T G A C 
t: A - C G C 

column 
scores: 

 
1 

 
-2 

 
-1 

 
-1 

 
1 
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has a score of 1 + (-2) + (-1) + (-1) + 1 = -2, while the alignment 
 
 

s: A T G A C - - 
t: - - - A C G C 

column 
scores: 

 
-2 

 
-2 

 
-2 

 
1 

 
1 

 
-2 

 
-2 

 
has a score of (-2) + (-2) + (-2) + 1 + 1 + (-2) + (-2) = -8.  The similarity of two 
sequences is the maximum of all possible alignment scores.   
 Because we obtain the same column scores regardless of which sequence is in the 
first row, the order in which we write the sequences is irrelevant for determining an 
alignment score.  Thus, the similarity of two sequences does not depend on which we 
write first.  For example, the similarity of ATGAC and ACGC is the same as the 
similarity of ACGC and ATGAC. 

Quick Review Question 8 Give the score for the alignment (ATGAC, ACG-C). 

Similarity Score 
The Needleman-Wunsch Algorithm is a technique to determine the similarity and the 
alignment(s) that yield this highest score (Needleman and Wunsch 1970).  The algorithm 
employs dynamic programming, which divides a problem into a collection of smaller 
problems and uses the solutions to these smaller problems to solve the larger problem.  
The Needleman-Wunsch Algorithm makes the best decision for prefixes, or 
subsequences from the start of the sequences (the smaller problems), as it iterates over 
the length of those prefixes.  We use the notation s[i..j] to indicate the subsequence from 
position i to position j, where the first position number is 0 as with arrays in C, C++, 
Java, and Python.  For example, with indexing starting at 0 in s = ATGAC, s[1..2] is TG; 
and s[0..2] is the prefix ATG.  The notation s[i] is base i in sequence s, so that s[1] is T.   
 We write the developing intermediate similarity scores in a two-dimensional array, 
or matrix, a.  As in Figure 6, the bases of s appear along the left margin of the array, 
starting at row 1; and the bases of t are on top, starting at column 1.  Blanks, which we 
represent with hyphens, provide the headings for row 0 and column 0.  For clarity in 
Figure 6, we have the indices of s on the extreme left and the indices of the rows of a 
adjacent to the matrix.  Thus, 1 appears to the left of T, which is s[1]; and T heads row 2 
of matrix a.  Similarly, the indices of t appear above the corresponding bases; and the 
column numbers of a are immediately above the matrix.  
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     0  1  2  3 
   -  A  C  G  C 
   0  1  2  3  4 
 - 0 0 __ -2 __ -4 __ -6 __ -8 
   |         

0 A 1 -2 
   | 

1 T 2 -4 
   | 

2 G 3 -6 
   | 

3 A 4 -8 
   | 

4 C 5 -10 

Figure 6 Initial values in similarity matrix with s = ATGAC (left) and t = ACGC 
(above) 
 
 Array position a[i][j] is the similarity score for prefixes s[0..i - 1] and t[0..j - 1].  For 
example, a[3][2] gives the similarity score for s[0..2] (ATG in our example) and t[0..1] 
(AC here).  In row 0, we write the on-going scores for matching all spaces with prefixes 
of t.  For example, aligning a space with the prefix t[0..0] = A costs -2; two spaces 
corresponding to t[0..1] = AT has a cumulative value of (-2) + (-2) = -4; three spaces and 
ACG, adds -2 to the previous score to obtain (-4) + (-2) = -6; and four spaces with t 
yields (-6) + (-2) = -8.  Symmetrically, in column 0, we place the on-going scores for 
matching prefixes of s with all spaces.  We draw line segments between subsequent 
values to indicate the derivation steps. 
 We give a general formula for score a[i][j] below, but first we illustrate the process 
with a particular example.  To determine a[3][2], we only must know the row 3 heading 
(G), column 2 heading (C), and the scores in positions above (a[2][2]), to the left 
(a[3][1]), and diagonally left above (a[2][1]) the desired position. Figure 7 illustrates this 
situation.  We obtain the best alignment of ATG and AC in at least one of three ways: 
 

•   Diagonal:  Starting with the best alignment of AT and A, prefixes of s and t, 
respectively, consider the impact of the match (+1 value), or in this case, the 
mismatch (-1 value) of G onto the prefix of s and C onto the prefix of t.  Thus, 
add +1 or -1 to the diagonal value. 

 
•   Above:  Starting with the best alignment of AT and AC, prefixes of s and t, 

respectively, consider the impact (-2 value) of adding G to the prefix of s and 
blank to the prefix of t.  Thus, add -2 to the value above the position. 

 
•   Left:  Starting with the best alignment of ATG and A, prefixes of s and t, 

respectively, consider the impact (-2 value) of adding blank to the prefix of s 
and C to the prefix of t.  Thus, also add -2 to the value to the left of the position. 
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The value in a[3][2] is the maximum of the three scores. 
 
     0  1  
   -  A  C  
   0  1  2  
 - 0       
         

0 A 1       
         

1 T 2   -1  0  
                                          (-1) + (-1) = -2  \      |   0 + (-2) = -2 
2 G 3   -3 __ ?  
         |     

(-3) + (-2) = -5 

Figure 7 Determine a[3][2] from a[2][2], a[3][1], and a[2][1] 
 
 The score -1 in a[2][1] indicates the best score for aligning prefix sequences s[0..1] 
= AT and t[0..0] = A.  Going diagonally to a[3][2], we have the score for attaching G to 
the end of AT and C to the end of A.  The alignment situation is as follows: 
 

Best alignment of 
AT and A 

G 
C 

 
Because G and C mismatch, this alignment of ATG and AC has a value of (-1) + (-1) 
= -2, which is the sum of the previous score and the mismatch value, as Figure 8 
illustrates. 
 

  -  A  C 
       
-       
       

A       
       

T    -1   
                            (-1) + (-1) = -2  \ 

G      ? 

Figure 8 Intermediate score from mismatch of G and C 
 
 From Figure 7, a[3][2], a[2][2] = 0 is the similarity for prefixes sequences s[0..1] = 
AT and t[0..1] = AC.  Thus, when extending the prefix of s to s[0..2] = ATG, we match a 
space with G from s, as follows: 
 

Best alignment of 
AT and AC 

G 
- 
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Because matching with a space costs -2, this arrangement has a total value of 0 + (-2) 
= -2, as Figure 9 shows. 
 

  -  A  C  
        
-        
        

A        
        

T      0  
                                            |     0 + (-2) = -2 

G      ?  

Figure 9 Intermediate score from alignment of of G and a space 
 
 Finally, we consider a[3][1] = -3, which is to the left of a[3][2].  To go from the 
best alignment of the prefix ATG of s and A of t, we match a space in s to C in t, as 
follows: 
 

Best alignment of 
ATG and A 

- 
C 

 
The resulting value, a[3][1] + (-2) = (-3) + (-2) = -5, is not as good as the -2 values 
obtained from above and on the diagonal.  The array element a[3][2] is the maximum 
of -2, -2, and -5, which is -2.  
 To summarize, a[3][2] is the maximum of the following values: 
 

•   Diagonal value (a[2][1]) plus -1 for mismatch of G and C (or diagonal value 
plus +1 if the letters had matched) 
 

•   Above value (a[2][2]) plus (-2) 
 

•   Left value (a[3][1]) plus (-2) 
 
The general formula is as follows: 
 

 

a[i][ j] =max
a[i −1][ j −1] + p(s[i], t[ j])

a[i −1][ j]+ (−2)
a[i][ j −1]+ (−2)

where
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

p(s[i], t[ j]) =
+1, if s[i] = t[ j]
−1, if s[i] ≠ t[ j]
⎧ 
⎨ 
⎩ 
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Figure 10 illustrates derivation of the value a[i][j].    
 

 a[i - 1][j - 1]  a[i - 1][j] 
 
 

   

 
 

   

 a[i ][j - 1]  a[i][j] 
 

Figure 10 Derivation of the value a[i][j] 
 
 A line segment is drawn to a[3][2] from any of the three positions that yields this 
maximum.  In this example, we draw a line segment between a[2][1] and a[3][2] and 
between a[2][2] and a[3][2]. 

Quick Review Question 9 Suppose a[2][2] = a[2][3] = 0, a[3][2] = -2, and row 3 and 
column 3 headings read “G,”  as in the following matrix: 

        G 
  0  1  2  3 
 0        
         
 1        
         
 2     0  0 
         

G 3     -2   

For Parts a-c, determine the score from each position to a[3][3]. 
a. Diagonal, a[2][2] 
b. Above, a[2][3]  
c. Left, a[3][2]  
d. The score of a[3][3] is derived from which direction? 

Quick Review Question 10 Suppose the value above is -5; the left position is 1; and 
the diagonal position is 0.  The row label is G, and the column label is C, as in the 
following partial matrix:   

    C 
     
  0  -5 
     

G  1   

Compute the possible values from the directions in Parts a-c below and the new value in 
the array of similarity values. 

+ (-2) 

+ (-2) 
+ (-1) 
or 
+ 1 
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 a. Above 
b. Left 
c. Diagonal  
d. What is the matrix value? 
e. We draw line segment(s) from which position(s)? 

Similarity Matrix 
To derive the entire array, we initialize the first row and column as Figure 6 indicates.  
We then proceed row by row, from left to right, determining scores by the above formula.  
Having obtained values to the left, above, and on the diagonal, we can use the formula to 
evaluate a[i][j].  The answer to Quick Review Question 4 develops the complete array.  

Quick Review Question 11 Fill in the array of values for the similarity matrix 
below, indicating the direction(s) from which you derive each value.  Employ the 
following scoring: 

•   +1 for a match 
•   -1 for a mismatch 
•   -2 for a space in one of the corresponding positions 

 
  -  A  C  G  C 
  0  1  2  3  4 
- 0 0 __ -2 __ -4 __ -6 __ -8 
  |         

A 1 -2         
  |         

T 2 -4         
  |         

G 3 -6         
  |         

A 4 -8         
  |         

C 5 -10         
 
 Figure 11 contains the entire similarity matrix for Quick Review Question 4.  The 
value in the bottom, right corner, 0, is the similarity of ATGAC and ACGC.  Following 
the line segments from that corner backward to a[0][0], we see how best to align the 
sequences:  
 

•   A diagonal line segment indicates a match or mismatch of the pair of bases that 
head the row and column.  For example, the diagonal between a[4][3] and 
a[5][4] indicates that it is best to attach the Cs onto the prefixes aligned with 
similarity value a[4][3]. The diagonal between a[1][1] and a[2][2] says to align 
T and C onto the prefixes aligned with similarity value a[1][1]. 
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•   A vertical line segment matches the row heading in s with a space.  For 
example, the horizontal line segment between a[3][3] and a[4][3] indicates to 
attach A to the prefix of s and a space to the prefix of t in the developing 
alignment. 

 
•   A horizontal line segment matches a space with the column heading in t. 

 
  -  A  C  G  C 
  0  1  2  3  4 
- 0 0 __ -2 __ -4 __ -6 __ -8 
  | \        

A 1 -2  1 __ -1 __ -3 __ -5 
  |  | \  \    

T 2 -4  -1  0 __ -2 __ -2 
  |  | \ | \  \  

G 3 -6  -3  -2  1 __ -1 
  | \ | \ |  | \  

A 4 -8  -5  -4  -1  0 
  |  | \   | \  

C 5 -10  -7  -4  -3  0 

Figure 11 Array of similarity values for ATGAC and ACGC 
 
  Figure 12 displays the similarity matrix of Figure 11 with the path from a[5][4] to 
a[0][0] indicating the best alignment.  Using Figure 12, Figure 13 gives the optimum 
alignment of ATGAC and ACGC.  Sometimes, more than one alignment yields the same 
similarity. 

  -  A  C  G  C 
  0  1  2  3  4 

- 0 0 __ -2 __ -4 __ -6 __ -8 
  | \        

A 1 -2  1 __ -1 __ -3 __ -5 
  |  | \  \    

T 2 -4  -1  0 __ -2 __ -2 
  |  | \ | \  \  

G 3 -6  -3  -2  1 __ -1 
  | \ | \ |  | \  

A 4 -8  -5  -4  -1  0 
  |  | \   | \  

C 5 -10  -7  -4  -3  0 

Figure 12 From Figure 11, path indicating best alignment of ATGAC and ACGC in bold 
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s: A T G A C 
t: A C G - C 

Figure 13 Optimal alignment of ATGAC and ACGC obtained from Figure 12 

Needleman-Wunsch Algorithm 
Bases match, bases mismatch, and a base’s association with a space can carry different 
weights than +1, -1, and -2, respectively.  Thus, the Needleman-Wunsch Algorithm 
(score), which determines the similarity array for two sequences, has input parameters for 
matchValue, mismatchValue, and spacePenalty, as well as for sequences s and t.  The 
output parameter is the array (a) of similarity values.  The Needleman-Wunsch 
Algorithm follows: 
 
score(s, t, matchValue, mismatchValue, spacePenalty, a) 
 Procedure to determine array of similarity values for two sequences of bases 
 
Pre:  
 s and t are non-empty sequences of bases.  
 matchValue is the numeric value for two paired bases in an alignment agreeing. 
 mismatchValue is the numeric value for two paired bases in an alignment 

disagreeing. 
 spacePenalty is the numeric value for a base being paired with a space in an 

alignment. 
 matchValue > mismatchValue 
 matchValue > spacePenalty 
 a is an m-by-n array, where m is the length of s plus 1 and n is the length of t plus 1. 
 
Post:  
 a is an array of similarity values for prefixes of s and t.  The value in the bottom, 

right corner is the similarity of s and t. 
 
Algorithm: 
 m ¬ length of s 
 n ¬ length of t 
 for i from 0 through m, do the following: 
  a[i][0] ¬ i * spacePenalty 
 for j from 0 through n, do the following: 
  a[0][j] ¬ j * spacePenalty 
 for i from 1 through m, do the following: 
  for j from 1 through n, do the following: 
   if (s[i - 1] equals t[j - 1]) 
    diagonalValue ¬  matchValue 
   else 
    diagonalValue ¬  mismatchValue 
   a[i][j]  ¬ max( a[i - 1][j - 1] + diagonalValue, 
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      a[i - 1][j]  + spacePenalty, 
      a[i][j - 1]  + spacePenalty) 

Quick Review Question 12 The questions below refer to the example in Quick 
Review Question 4 and Figure 11 as they relate to the score algorithm.   

a. Give the value of s. 
b. Give the value of t. 
c. Give the value of matchValue. 
d. Give the value of mismatchValue. 
e. Give the value of spacePenalty. 
f. Give the value of m. 
g. Give the value of n. 
h. Indicate the component to which the first loop assigns values:  column 0, 

diagonal, last column, last row, or row 0 
i. Give the value that the second loop assigns to a[0][3]. 
j. Indicate how the third loop goes through the matrix:  a column at a time, a 

diagonal at a time, or a row at a time 
k. When i equals 4, give the value of s[i - 1]. 
l. When j equals 5, give the value of t[j - 1]. 
m. When i equals 4 and j equals 5, give the value of diagonalValue. 
n. When i equals 4 and j equals 5, referring to Figure 11, give the value of 

a[i - 1][j - 1] + diagonalValue. 
o. When i equals 4 and j equals 5, referring to Figure 11, give the value of 

a[i - 1][j] + spacePenalty. 
p. When i equals 4 and j equals 5, referring to Figure 11, give the value of a[i][j - 

1]+ spacePenalty. 
q. When i equals 4 and j equals 5, give the value of a[i][j]. 

 
 The algorithm below uses the array of similarity values to determine the optimal 
alignment of s and t in a method that is comparable to following line segments from the 
bottom, right to the top, left in the similarity array.  The algorithm employs an 
initialization function, align, that calls a recursive function, recAlign, to develop the 
alignment.  The function align has input parameters of this array and the original strings 
and output parameters of the aligned strings with a dash indicating a space.  In recAlign, 
the plus sign (+) between a string and a character  indicates concatenation, and null is the 
empty string. 
 
align(s, t, a, spacePenalty, sAlignment, tAlignment) 
 Algorithm to determine an optimal alignment of two sequences of bases 
 
Pre:  
 s and t are sequences of bases. 
 a is the array of similarity values for prefixes of s and t, as completed by score.   
 spacePenalty is the numeric value for a base being paired with a space in an 

alignment. 
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Post: 
 sAlignment and tAlignment are sequences in the optimal alignment for sequences s 

and t, respectively, with a dash indicating a space. 
 
 
Algorithm: 
 sLength ¬ length of s 
 tLength ¬ length of t 
 recAlign(s, t, a, spacePenalty, sAlignment, tAlignment, sLength, tLength) 
 
recAlign(s, t, a, spacePenalty, sAlignment, tAlignment, i, j) 
 Algorithm to determine optimal alignment of two prefix sequences of bases 
 
Pre:  
 s and t are sequences of bases. 
 a is the array of similarity values for prefixes of s and t, as completed by score.   
 i is an index that is less than or equal to the length of s. 
 j is an index that is less than or equal to the length of t. 
 spacePenalty is the numeric value for a base being paired with a space in an 

alignment. 
 
Post: 
 sAlignment and tAlignment are sequences in the optimal alignment for prefixes 

s[0..i - 1] and t[0..j - 1], respectively, with a dash indicating a space. 
 
Algorithm: 
 if (i equals 0 and j equals 0) 
  sAlignment ¬ null 
  tAlignment ¬ null 
 else 
  if (i > 0 and a[i][j ] equals a[i - 1][j] + spacePenalty)  // above 
   recAlign(s, t, a, matchValue, mismatchValue, spacePenalty,  
     sAlignment, tAlignment, i - 1, j) 
   sAlignment ¬ sAlignment + s[i - 1] 
   tAlignment ¬ tAlignment + '-' 
  else if (j > 0 and a[i][j ] equals a[i][j - 1] + spacePenalty) // left 
   recAlign(s, t, a, matchValue, mismatchValue, spacePenalty,  
     sAlignment, tAlignment, i, j - 1) 
   sAlignment ¬  sAlignment + '-' 
   tAlignment ¬  tAlignment + t[j - 1]  
  else          // diagonal 
   recAlign(s, t, a, matchValue, mismatchValue, spacePenalty,  
     sAlignment, tAlignment, i - 1, j - 1) 
   sAlignment ¬ sAlignment + s[i - 1] 
   tAlignment ¬ tAlignment + t[j - 1] 
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Quick Review Question 13 The questions below refer to the example in Quick 
Review Question 5 and Figure 12 as they relate to the align and recAlign algorithms.   

a. Give the value of sLength. 
b. Give the value of tLength. 
c. Give the value of sAlignment after completion of align. 
d. Give the value of tAlignment after completion of align. 
e. Referring to Figure 12, for i equals 4 and j equals 3, give the value of a[i][j ]. 
f. Referring to Figure 12, for i equals 4 and j equals 3, give the value of 

a[i - 1][j] + spacePenalty 
g. For i equals 4 and j equals 3, complete the arguments in the call to recAlign. 

 
recAlign("ATGAC", "ACGC", a, -2, sAlignment, tAlignment,  ,    ); 
 

h. After the call to recAlign in Part g when i equals 4 and j equals 3, the value of 
sAlignment is ATG.  Give the value subsequently assigned to sAlignment. 

i. After the call to recAlign in Part g when i equals 4 and j equals 3, the value of 
tAlignment is ACG.  Give the value subsequently assigned to tAlignment. 

j. For i and j equal 1, referring to Figure 12, give the value of a[i][j ]. 
k. For i and j equal 1, referring to Figure 12, give the value of a[i - 1][j] + 

spacePenalty. 
l. For i and j equal 1, referring to Figure 12, give the value of a[i][j - 1] + 

spacePenalty. 
m. For i and j equal 1, complete the arguments in the call to recAlign. 

 
recAlign("ATGAC", "ACGC", a, -2, sAlignment, tAlignment,  ,    ); 
 

n. Indicate the value of sAlignment after the call to recAlign in Part m:  0, "A", 
"AT", or null 

o. After the call to recAlign in Part m when i and j equal 1, the value of 
sAlignment is null.  Give the value subsequently assigned to sAlignment. 

p. After the call to recAlign in Part m when i and j equal 1, the value of 
tAlignment is null.  Give the value subsequently assigned to tAlignment. 

 
 The procedure align gives one optimal alignment, but not every one.  When a 
choice exists, the algorithm gives priority to going vertically up, next to going to the left, 
and finally to going on the diagonal. An advantage of having the diagonal be the last 
option is that recAlign then does not need values for matchValue and mismatchValue.  By 
altering the if-else statement, we can change this precedence.  For some sequence pairs, 
such variations yield different optimal alignments. 

Why Parallel? 
Aligning two sequences requires a great deal of computing power.  For instance, if each 
sequence is of length n = 10,000, then the effort for creation of the similarity matrix is on 
the order of, or proportional to, n2 = 100,000,000.  In general, we use big-oh notation, 
here O(n2), to indicate the effort in terms of the size, n.  Thus, because (2n)2 = 4n2, going 
from a sequence of length n to a sequence double the length, 2n, should take 
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proportionally four times as long.  For a C implementation of the Needleman-Wunsch 
Algorithm, Table 3 lists timings of the sequential program for an increasing number of 
nucleotides.  Note that the runtime to match sequences of length 10,000 is approximately 
four times the process for sequences of length 5,000.  We can make a similar observation 
going from sequences of length 10,000 to those of length 20,000 and from 20,000 to 
40,000.  Figure 14 graphs the data in Table 3 with the superimposed plot of runtime = 
1.62585 ´ 10-8 nucleotides2.  Thus, the graph illustrates that the runtime is proportional 
(constant of proportionality 1.62585 ´ 10-8) to the square of the number of nucleotides.  
Moreover, when we are trying to match a sequence to multiple sequences in a database, 
the real challenge of the task becomes evident.  Thus, it is advantageous to have multiple 
processes working on tasks in parallel, or simultaneously.  We can have different 
processes aligning the search sequence to different database sequences, and/or we can 
have a parallel alignment algorithm to operate on each pair of sequences. 
 

# Nucleotides Runtime (s) 
10 0.004 
50 0.004 

100 0.004 
500 0.008 

1,000 0.017 
5,000 0.307 

10,000 1.176 
12,000 2.127 
16,000 3.837 
20,000 5.982 
24,000 8.520 
30,000 14.560 
35,000 21.116 
37,500 24.310 
40,000 27.340 

Table 3 Runtime (s) versus number of nucleotides for a sequential C implementation 
of the Needleman-Wunsch Algorithm 
 

 

Figure 14 Graph of the data in Table 3 and runtime = 1.62585 ´ 10-8 nucleotides2   
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 However, splitting the work of determining the similarity matrix is not obvious for 
an innately sequential task¾calculating the elements row by row from left to right.  To 
determine one matrix element, we must know the values of three other elements: the 
value to the left, above, and diagonally above.  In the following section, we consider the 
pipeline algorithm that splits the work so that, at least to some degree, the calculations 
can be done in parallel. 

Pipeline Algorithm 
For simplicity, let us assume that the number of processes equals the number of rows, n, 
in the similarity matrix and that Process j is responsible for making the calculations on 
row j.  The algorithm score indicates the calculation of Process j’s first element, or its 
element in column 0, in the similarity matrix, a, as follows: 
 
  a[0][j] ¬ j * spacePenalty 
 
Instead of having one process looping sequentially through the calculation of each 
element in the first column (column 0), the processes can simultaneously compute their 
first column elements without having to communicate with the other processes.  After the 
evaluation, Process j, for j = 0, 1, …, n – 2, can send a[0][j] to Process (j + 1). 
 For an example, let us return to the sequences s = ATGAC and t = ACGC.  With 
spacePenalty = -2, for the first step six processes calculate simultaneously the first-row 
elements, as the following indicates: 
 
Step 1: 
  - A C G C 
 - 0     Process 0 
 A -2     Process 1 
 T -4     Process 2 
 G -6     Process 3 
 A -8     Process 4 
 C -10     Process 5 
 
The six values are evaluated in the time it would take the sequential algorithm to 
calculate one element.  Afterwards, Processes 0 – 4 send their values (0, -2, -4, -6, -8, 
respectively) to Processes 1 – 5, respectively, for the calculations involving diagonal 
elements.   
 Moreover, as in the score function, Process 0 can compute ith element in row 0 by 
just knowing the value of spacePenalty, as follows: 
 
  a[i][0] ¬ i * spacePenalty 
 
However, instead of looping through all of the m elements, immediately after the 
calculation of row 0’s second element, a[0][1], Process 0 can communicate this value to 
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Process 1.  For example, with spacePenalty = -2, Process 0 calculates its next element 
(a[0][1] = 1 * -2 = -2) in boldface as follows and sends its this value to Process 1: 
 
Step 2: 
  - A C G C 
 - 0 -2    Process 0 
 
After this communication, two calculations can occur simultaneously:  Process 0 can 
evaluate a[0][2] as 2 * spacePenalty = 2 * -2 = -4; and knowing the diagonal (a[0][0] = 
0), left (a[1][0] = -2), and above (a[0][1] = -2) elements, Process 1 can evaluate a[1][1] 
as 1, the maximum of 0 + 1, -2 + -2, and -2 + -2.  These simultaneous calculations are in 
boldface in the following step: 
 
Step 3: 
  - A C G C 
 - 0 -2 -4   Process 0 
 A -2 1    Process 1 
 
 Then, at the same time, Process 0 sends a[0][2] = -4 to Process 1, and Process 1 
sends a[1][1] = 1 to Process 2.  Now, Processes 0, 1, and 2 can be occupied 
simultaneously calculating their next elements.  Process 0 calculates 3 * -2 = -6; while 
Process 1 uses -2, 1, and -4 to calculate a[1][2] = -1; and Process 2 employs -2, -4, and 1 
in its evaluation of a[2][1] = -1, as follows: 
 
Step 4: 
  - A C G C 
 - 0 -2 -4 -6  Process 0 
 A -2 1 -1   Process 1 
 T -4 -1    Process 2 
 
 Processes 0, 1, and 2 now pass these boldface values to Processes 1, 2, and 3, 
respectively.  Then, the first four processes can simultaneously evaluate their next 
elements, as Step 5 below indicates in boldface.  With each step, an additional process 
was drafted to work.   
 
Step 5: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3  Process 1 
 T -4 -1 0   Process 2 
 G -6 -3    Process 3 
 
 After passing these boldface values to the next processes down, Process 0 is out of 
work.  However, Processes 1 through 4 can calculate their next values (in boldface 
below), with Processes 1 through 3 sending the results to Processes 2 through 4, 
respectively: 
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Step 6: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2  Process 2 
 G -6 -3 -2   Process 3 
 A -8 -5    Process 4 
 
 With Processes 0 and 1 having nothing to do, Processes 2 – 5 evaluate their next 
elements, which are in boldface in the following, and Processes 2 – 4 communicate their 
results to the subsequent processes: 
 
Step 7: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1  Process 3 
 A -8 -5 -4   Process 4 
 C -10 -7    Process 5 
 
 Now, only Processes 3, 4, and 5 have work to do, as the following indicates: 
 
Step 8: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1 -1 Process 3 
 A -8 -5 -4 -1  Process 4 
 C -10 -7 -4   Process 5 
 
 After the appropriate communication, only Processes 4 and 5 have elements to 
calculate: 
 
Step 9: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1 -1 Process 3 
 A -8 -5 -4 -1 0 Process 4 
 C -10 -7 -4 -3  Process 5 
 
 Process 5 has one last element, a[5][4], to calculate for completion of the entire 
similarity matrix: 
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Step 10: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1 -1 Process 3 
 A -8 -5 -4 -1 0 Process 4 
 C -10 -7 -4 -3 0 Process 5 
 
 Looking back at this example, we only needed 10 steps in using the parallel pipeline 
algorithm to perform the calculations of this 6-by-5 matrix:  5 steps to march across, 
keeping Process 0 occupied with each step, and 5 steps to complete each of the rows 
below row 0.  By contrast, the sequential Needleman-Wunsch Algorithm requires 6 * 5 = 
30 steps to do the calculations, evaluating one element at a time. 

Quick Review Question 14 Indicate the number of calculation steps using 
sequential Needleman-Wunsch Algorithm and a pipeline algorithm for each of the 
following sizes of matrices: 

a. 10-by-6 
b. 300-by-333 
c. 5000-by-5000 
d. 30,200-by-30,190 
 

 To reiterate, Figures 15 and 16 depict the progress of this pipelining system for 
sequences of length n = 11 and m = 16.  The processes calculate the darker elements 
without information from any other process.  Shading indicates the pipeline order of the 
calculations.  After communication of the value above, a process can start computation of 
its element in darker outline.  Thus, calculation of values on this anti-diagonal can 
proceed in parallel.  Figure 15 shows one of the earlier phases with only three processes 
being busy, while Figure 16 depicts a stage where all processes are occupied (Chen et al 
2006). 

                 Process 0 
                 Process 1 
                 Process 2 
                 Process 3 
                 Process 4 
                 Process 5 
                 Process 6 
                 Process 7 
                 Process 8 
                 Process 9 
                 Process 10 
                 Process 11 

Figure 15 Pipelining the similarity matrix for sequences of length n = 11 and m = 16 
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                 Process 0 
                 Process 1 
                 Process 2 
                 Process 3 
                 Process 4 
                 Process 5 
                 Process 6 
                 Process 7 
                 Process 8 
                 Process 9 
                 Process 10 
                 Process 11 

Figure 16 Pipelining the similarity matrix for sequences of length n = 11 and m = 16 

Quick Review Question 15 Suppose that two sequences are each of length n = m = 
30.  Assume we are using the pipeline algorithm using the configuration above with the 
number of processes equaling the number of rows and each process calculating the value 
of one similarity matrix (a) element before communicating that value. 

a. How many processes should we use? 
b. Which process computes a[0][20], and to which process does it send the 

value? 
c. Which process computes a[20][0], and to which process does it send the 

value? 
d. Which process computes a[30][10], and to which process does it send the 

value? 
e. What is the size of the similarity matrix? 
f. How many steps are required to calculate (fill in) the matrix sequentially? 
g. How many simultaneous steps are required to calculate (fill in) the matrix 

using the described pipeline method? 
h. What is the complexity of this version of the pipeline algorithm? 
i. How many simultaneous communications are required? 
 

 As indicated in the two previous quick review questions, using this version of the 
pipeline algorithm, the number of steps to calculate the similarity matrix for sequences of 
length n is on the order of, or proportional to, n, written with big-oh notation as O(n).  
The processes determine the elements of the first column simultaneously, in 
approximately the same amount of time that it takes a single process to evaluate one 
element.  Then, Process 0 marches across the first row of n elements with other processes 
performing evaluations, too.  Afterwards, calculations in the remaining n rows are 
completed in n steps.  Thus, the complexity for calculation using the pipeline algorithm, 
where a process communicates a value immediately after its evaluation, is as follows:  
O(1) + O(n) + O(n) = O(n).  This complexity is a great improvement over the sequential 
program, which has complexity O(n2). 
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 However, one disadvantage of this version of the pipeline algorithm is the amount 
of communication, which is O(n), too.  For smaller sequences, the pipeline version with 
32 processes actually takes longer (Table 4).  However, starting with sequences of length 
12,000 nucleotides, we do observe speedup.  For example, for sequences of length 
37,500, the sequential algorithm takes approximately 24.310 s / 16.510 s = 1.472 times 
longer than the pipeline algorithm.  Ideally, employing 32 processes, we would hope for a 
speedup of 32, but communication limits this speedup potential.  
 

# Nucleotides Sequential 
Runtime (s) 

Pipeline Runtime (s), 
32 Processes 

Speedup 

10 0.004 0.0162 0.247 
50 0.004 0.0084 0.476 

100 0.004 0.0067 0.593 
500 0.008 0.0095 0.842 

1,000 0.017 0.0157 1.083 
5,000 0.307 0.3210 0.956 

10,000 1.176 1.2310 0.955 
12,000 2.127 1.7980 1.183 
16,000 3.837 3.1730 1.209 
20,000 5.982 4.7770 1.252 
24,000 8.520 7.0690 1.205 
30,000 14.560 11.034 1.320 
35,000 21.116 14.925 1.415 
37,500 24.310 16.510 1.472 
40,000 27.340 19.240 1.421 

Table 4 Runtime (s) versus number of nucleotides for a sequential and pipeline C 
implementations of the Needleman-Wunsch Algorithm along with speedup 

Block-and-Band Version of the Pipeline Algorithm 
To reduce communication, we can have each process calculate a block of several column 
values before communicating the results to the next process.  For example, with 
sequences s = ATGAC and t = ACGC and spacePenalty = -2, we start with the same 
initial step of calculating and communicating the first column elements: 
 
Step 1: 
  - A C G C 
 - 0     Process 0 
 A -2     Process 1 
 T -4     Process 2 
 G -6     Process 3 
 A -8     Process 4 
 C -10     Process 5 
 
 Then, sequentially, Process 0 computes the two-element block a[0][1] = 1 * -2 and 
a[0][2] = 2 * -2 = -4: 
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Steps 2: 
  - A C G C 
 - 0 -2 -4   Process 0 
 
 After communicating the results to Process 1, Process 0 can work on evaluating 
sequentially its next block, at the same time that Process 1 is calculating sequentially its 
own block of two elements: 
 
Step 3: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1   Process 1 
 
 Processes 0 and 1 communicate these blocks to Processes 1 and 2, respectively.  
Computation continues with the latter processes evaluating their two-element blocks 
concurrently: 
 
Step 4: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0   Process 2 
 
 After communication, Process 1 no longer participates as Processes 2 and 3 
continue: 
 
Step 5: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2   Process 3 
 
 Afterwards, in the same fashion at the next step, two processes concurrently 
calculate their block elements in sequence and pass their blocks to the subsequent 
processes: 
 
Step 6: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1 -1 Process 3 
 A -8 -5 -4   Process 4 
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 Then, Process 3’s row is complete, and Processes 4 and 5 evaluate the following 
boldface blocks: 
 
Step 7: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1 -1 Process 3 
 A -8 -5 -4 -1 0 Process 4 
 C -10 -7 -4   Process 5 
 
 After Process 5 sends its block to Process 5, the latter can complete the similarity 
matrix: 
 
Step 8: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5 Process 1 
 T -4 -1 0 -2 -2 Process 2 
 G -6 -3 -2 1 -1 Process 3 
 A -8 -5 -4 -1 0 Process 4 
 C -10 -7 -4 -3 0 Process 5 
 
 Although a process must calculate the elements of a block sequentially, multiple 
processes, here two, can evaluate their blocks concurrently.  This example required seven 
communication steps instead of nine in the case of single-element blocks.  Moreover, 
parallel processing commands to communicate a block of elements are faster than two 
separate sends of single elements. 
 Figure 17 depicts communication of blocks, which are in color, of size 2, for 
sequences of length n = 11 and m = 16 (Chen et al 2006). 
 

                 Process 0 
                 Process 1 
                 Process 2 
                 Process 3 
                 Process 4 
                 Process 5 
                 Process 6 
                 Process 7 
                 Process 8 
                 Process 9 
                 Process 10 
                 Process 11 

Figure 17 Pipelining a similarity matrix with block size of 2 
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Quick Review Question 16 For sequences of length n = 17 and m = 15, give the 
number of 

a. calculation steps using the sequential Needleman-Wunsch Algorithm 
b. calculation steps using the pipeline algorithm 
c. communication steps using the pipeline algorithm 
d. sequential computations within a block of size 3 
e. communication steps using a block of size 3 
f. sequential computations within a block of size 5 
g. communication steps using a block of size 5 
 

 Besides having a process calculate multiple column elements, we can make a 
process responsible for a band, or several rows, of elements.  Figure 18 shows an 
allocation, where each process is responsible for a band size of 3 rows, where the block 
size, or number of columns, is 2.  Thus, when possible, Process j calculates the values in 
a 3 ´ 2 submatrix and then communicates the two values in the last row of the submatrix 
to the next process, Process (j + 1).  Upon receiving the two elements, Process (j + 1) 
proceeds sequentially row-by-row from left to right to calculate another 3 ´ 2 submatrix.  
Evaluation of the 3 ´ 2 submatrices proceeds in parallel (Chen et al 2006). 
 

                 }  
                 Process 0 
                  
                 } 

 
                 Process 1 
                  
                 } 

 
                 Process 2 
                  
                 } 

 
                 Process 3 
                  

Figure 18 Pipelining a similarity matrix with a band size of 3 and a block size of 2  
  
 Returning to the sequences s = ATGAC and t = ACGC with spacePenalty = -2, 
suppose we employ a band and block, each of size 2.  Because the similarity matrix is of 
size 6 ´ 5 and each band incorporates 2 rows, the algorithm employs 6 / 2 = 3 processes.  
One form of the initial step, which is below, has each process calculating the two 
elements of its band in the first column (column 0).  Then, Processes 0 and 1 send their 
bottom elements, -2 and -6, to Processes 1 and 2, respectively. 
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Step 1: 
    - A C G C               
 -  0     Process 0 
 A -2       
 T -4     Process 1 
 G -6       
 A -8     Process 2 
 C -10       
 
 Process 0 continues by sequentially calculating the four elements in the 2 ´ 2 
boldface submatrix below.  Then, the process sends the last row of the submatrix with 
elements 1 and -1 to Process 1. 
 
Step 2: 
  - A C G C 
 - 0 -2 -4   Process 0 
 A -2 1 -1   
 
 With the appropriate information, Process 1 now has enough information to 
calculate the elements of another 2 ´ 2 submatrix sequentially at the same time that 
Process 0 evaluates its last submatrix (see boldface below).  Then, Process 0 sends the 
elements of the last row of its submatrix, -3 and -5, to Process 1 while Process 1 
communicates its last row with values -3 and -2 to Process 2. 
 
Step 3: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5  
 T -4 -1 0   Process 1 
 G -6 -3 -2   
 
 Process 0 is now idle, while Processes 1 and 2 evaluate their next submatrices, in 
boldface as follows:   
 
Step 4: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5  
 T -4 -1 0 -2 -2 Process 1 
 G -6 -3 -2 1 -1  
 A -8 -5 -4   Process 2 
 C -10 -7 -4   
 
 Only Process 1 needs to communicate the last row with 1 and -1 to Process 2 so that 
the latter can evaluate the last submatrix, as follows in boldface: 
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Step 5: 
  - A C G C 
 - 0 -2 -4 -6 -8 Process 0 
 A -2 1 -1 -3 -5  
 T -4 -1 0 -2 -2 Process 1 
 G -6 -3 -2 1 -1  
 A -8 -5 -4 -1 0 Process 2 
 C -10 -7 -4 -3 0  
 
 Although sequential processing occurs, there is less communication with the block-
and-band version of the pipeline algorithm.  In the 2-by-2 version above, only four 
simultaneous sends of single elements or two-element sequences occur.  In contrast, the 
version with 2-element blocks with one-element bands required seven communication 
steps, and the original pipeline version with single-element blocks had nine 
communication steps. 

Quick Review Question 17 For sequences of length n = 17 and m = 15, give the 
number of 

a. processes for bands of size 6 and blocks of size 3 
b. sequential computations within such a submatrix 
c. elements communicated from such a submatrix 
d. communication steps for bands of size 6 and blocks of size 3 
e. processes for bands of size 3 and blocks of size 5 
f. sequential computations within such a submatrix 
g. elements communicated from such a submatrix 
h. communication steps for bands of size 3 and blocks of size 5 

Quick Review Question 18 Suppose that two sequences are each of length n = m = 
30.  Assume we are using the pipeline algorithm with a block and band size of 6. 

a. How many processes are required? 
b. Which process computes a[20][10], and to which process, if any, does it send 

the value? 
c. How many elements are in one of Process 2’s submatrices? 
d. How many values at a time does Process 2 communicate from a submatrix? 
e. How many steps are required to calculate (fill in) the matrix sequentially? 
f. One communication of a contiguous sequence of 6 elements is faster than 6 

individual sends.  How many simultaneous contiguous sequence 
communications are required? 

 
 By running the parallel program for different sizes of blocks and bands and timing 
the results, we can determine an optimal balance of computation and communication.  Of 
course, we should perform each experiment numerous times, say 100, and average the 
individual times to obtain more reliable results. 
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Exercises 
1. Consider the two sequences ATGAC and ACGC. 

a. List every possible alignment in which ATGAC has no blanks. 
b. List every possible alignment in which ATGAC has at least one blank and 

ACGC has only blank(s) at the end. 
 

2. a. Trace through the score algorithm for the strings and similarity array in Quick 
Review Question 4 and Figure 11.  

b. Trace through the align and recAlign algorithms for the strings and similarity 
array in Quick Review Question 5 and Figure 12. 

 
3. a. Develop the similarity array for strings s = CGTA and t = GCATG using the 

scoring of +1, -1, -2 from the example in this module. 
b. What is the similarity score? 
c. Give the optimal alignment that align returns. 
d. Give all optimal alignments for these strings. 
 

4. Repeat Exercise 1 for strings s = CGTA and t = GCATG. 
 
5. Repeat Exercise 1 for strings s = ATGAC and t = ACGC using the scoring that a 

mismatch or space costs 1, while a match has score 2. 
 
6. What is the complexity of score? 
 
7. What is the complexity of recAlign? 
 
8. Change the priority of the recAlign algorithm so that when a choice exists, the 

algorithm gives priority to going vertically up, next to going on the diagonal, and 
finally to going to the left.  Because priority is given to going up, the resulting 
alignment is called the “upmost alignment.”  Give the additional parameters that 
align and recAlign need. 

 
9. Change the priority of the recAlign algorithm so that when a choice exists, the 

algorithm gives priority to going to the left, next to going on the diagonal, and 
finally to going vertically up.  Because priority is given to going to the left, the 
resulting alignment is called the “down most alignment.”   Give the additional 
parameters that align and recAlign need. 

Projects 
1. a. Develop a program using the Needleman-Wunsch Algorithm that returns the 

similarity and an optimal alignment for pairs of sequences. 
b. Time the generation of the similarity matrix for different lengths of sequences 

as in Table 3 and Figure 14. 
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2. Complete Project 1, except modify align so that the procedure returns all optimal 
alignments.  Hint:  Use a stack and backtracking. 

 
3. Write a program to decide on the fastest method for reading two sequences: 

•   The root reads and broadcasts both sequences. 
•   One process reads and broadcasts one sequence, while another process reads 

and broadcasts the other sequence. 
•   Even processes read sequence 1 and then sequence 2, while the odd 

processes read the sequences in the reverse order. 
•   Each process reads both sequences. 

For timings, do each experiment at least 100 times, averaging the results. 
 
4. a. Implement the first version of the pipeline algorithm, where each process 

calculates on matrix element and then communicates the result.   
b. For sequences of size at least 5,000, calculate and graph the speedup of the 

calculation of the similarity value for an increasing number of processes.  Run 
the timing experiments multiple times, averaging the results. 

 
5. a. Implement the second version of the pipeline algorithm, where a process 

calculates a submatrix of size band ´ block and then communicates the results 
on the last submatrix row.   

b. For large sequences and a given number of processes, determine advantageous 
band and block sizes by fixing one size and increasing the other. 
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Answers to Quick Review Questions 
1. CATGGA 
2.  

a.   DNA 
b.   nucleotide 
c.   nucleotide 
d.   A, G, C, T 
e.   A, G, C, U 
f.   A, G 
g.   C, T, U 
h.   mRNA 
i.   T 
j.   U 
k.   G 
l.   A 
m.  A 
n.   C 
o.   RNA 
p.   DNA 
q.   base pair (bp) 

3. 
a.   proteins 
b.   enzymes 
c.   amino acids 
d.   peptide bonds 
e.   peptide bonds 
f.   residue 
g.   N-terminal 
h.   C-terminal 
i.   polypeptide 

4. 
a.   3 
b.   4 
c.   20 
d.   64 

5. 
a.   chromosome 
b.   gene 
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c.   genome 
d.   triplet 
e.   protein synthesis 
f.   nucleus 
g.   nucleus 
h.   mRNA 
i.   transcription 
j.   cytoplasm 
k.   ribosome 
l.   translation 
m.   cytoplasm 
n.   codon 

6. 
a.   mutation 
b.   tumor suppressor gene 
c.   oncogene 
d.   proto-oncogene 
e.   oncogene 

7. 
a.   recombination or crossing-over  
b.   genetic or linkage map 
c.   map unit  
d.   restriction site  
e.   genomics 
f.   bioinformatics 

 
8. 0 = 1 + (-1) + 1 + (-2) + 1 
 
9. a. 1; because the third row and column headings agree, we have a[2][2] + 1 = 0 

+ 1 = 1. 
b. –2 because from above, a[2][3] + (-2) = 0 + (-2) = -2. 
c. -4 because from the left, a[3][2] + (-2) = (-2) + (-2) = -4. 
d. Diagonal.  a[3][3] is the maximum of 1, -2, and -4, which comes from the 

diagonal.  Thus, we draw a line segment between a[2][2] and a[3][3]. 
 

10. a. -7 because (-5) + (-2) = -7.   
b. -1 because 1 + (-2) = -1.  
c. -1 because 1 + (-2) = -1. 
d. -1 
e. Left and diagonal  

 
11. Figure 11 
 
12. a. ATGAC 

b. ACGC 
c. 1 
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d. -1 
e. -2 
f. 6 
g. 5 
h. column 0 
i. -6 
j. a row at a time 
k. G 
l. C 
m. -1 
n. -1 
o. -4 
p. -1 
q. -1 
 

13. a. 5 
b. 4 
c. ATGAC 
d. ACG-C 
e. -1 
f. -1 
g. 3, 3 
h. ATGA 
i. ACG- 
j. 1 
k. -4 Thus, a[i][j ] does not equal a[i - 1][j] + spacePenalty. 
l. -4  Thus, a[i][j ] does not equal a[i][j - 1] + spacePenalty. 
m. 0, 0 
n. null 
o. A 
p. A 
 

14. a. 60 = 10 * 6; 15 = 6 + 9 
b. 99,900 = 300 * 333; 632 = 333 + 299  
c. 25,000,000 = 5000 * 5000; 9999 = 5000 + 4999 
d. 91,1738,000 = 30,200 * 30,190; 60,389 = 30,190 + 30,199 
 

15. a. 31 
b. Process 0, Process 1 
c. Process 20, Process 21 
d. Process 30, Process 31 
e. 31 ´ 31 
f. 31 × 31 = 961 
g. 61 = 1 (first column) + 30 (as Process 0 travels through the first row) + 30 (for 

the other processes to finish calculating their rows) 
h. O(n) 
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i. 60 = 1 (first column) + 30 (as Process 0 travels through the first row) + 29 (for 
the other processes to finish communicating).  Recall that the last process does 
not communicate its values. 

 
16. a. 288 = 18 * 16 

b. 33 = 18 + 15 
c. 32; the last row does not communicate its calculations 
d. 3 
e. 22 = 1 (for the first column elements) + 5 (for the 5 blocks of size 3 across the 

first row) + 16 (to complete the other rows); the last row does not 
communicate its blocks 

f. 5 
g. 20 = 1 (for the first column elements) + 3 (for the 3 blocks of size 5 across the 

first row) + 16 (to complete the other rows) ; the last row does not 
communicate its blocks 

 
17. a. 3 = 18 / 6 

b. 18 = 6 * 3 
c. 3 
d. 7 = 1 (first column) + 5 (as Process 0 travels through the first band) + 1 (for 

the other processes to finish communicating).  Recall that the last process does 
not communicate its values. 

e. 6 = 18 / 3 
f. 15 = 3 * 5 
g. 5 
h. 8 = 1 (first column) + 3 (as Process 0 travels through the first band) + 4 (for 

the other processes to finish communicating).  Recall that the last process does 
not communicate its values. 

 
18. a. 6 because the matrix has 31 rows 

b. Process 3, no communication 
c. 36 
d. 6 
e. 367 = 1 (first column) + 5 × 36  (as Process 0 travels through the first row with 

6 ´ 6 submatrix sizes) + 5 × 36  (for the other processes, except the last 
process, to finish calculating their submatrices) + 6 (for the last process to 
finish calculating its last submatrix of 6 elements) 

f. 10 = 1 (first column) + 5 (as Process 0 travels through the first row with block 
sizes of 6) + 4 (for the other processes to finish communicating).  Recall that 
the last process does not communicate its values. 


